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a b s t r a c t

Including the distance species are able to move in predictive models improves conservation practice.

Bird inventory projects carried out from 1993 to 2004 in Taiwan provide an opportunity to investigate

the relationships among species distribution, movement distance, and the environment. We compared

projected distributions of 17 Taiwanese endemic bird species using what we called the Standard Method

(i.e. movement distance is zero) and what we called the Buffer Method (i.e. movement distance is longer

than zero) in three presence-only models (GARP, MAXENT and LIVES). The Standard Method used species

original occurrence records directly while the Buffer Method expanded the occurrence of species to

areas 1 km2 around each recorded location. We first tested the efficacy of the Buffer Method using ten

common species of the 17, and then applied the method to two rare species of the 17. For both the

common and rare species, the distributions predicted by the two methods showed slight but important

differences. The Buffer Method for all species had a higher average predictive probability, while the

Standard Method had a higher maximum predictive probability. Most of the values for the area under the

curve (AUC) were over 0.8 with the exceptions of Taiwan Barbet (Megalaima nuchalis) and Taiwan Hwamei

(Garrulax taewanus), which have recently separated from Indochinese Barbet (Megalaima annamensis) and

Chinese Hwamei (Garrulax canorus), and since 2008 and 2006 have been regarded as species endemic to

the study area. Kappa values showed good performance for all species using both methods. The Buffer

Method, however, resulted in significantly higher sensitivity and accuracy values for all models of species

(p < 0.05). We conclude that when modeling species distribution including the area where the species was

censused along with areas within the minimum movement areas better defines the surrounding areas that

might supplement core habitat requirements. Therefore, using the Buffer Method, species surrounding

distribution can be obtained which provides a better understanding of the species distributions. Given

that distribution size is a key to the conservation of species, we suggest the Buffer Method can be used

in conservation planning.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Numerous species of animals and plants around the globe are

detecting the 0.75 ◦C of warming over the last century (Root et al.,

2005). One way they are responding is by shifting their ranges

towards the poles and to higher elevations (Root and Schneider,

2002, 2006; Root et al., 2003; Parmesan and Yohe, 2003). The

Intergovernmental Panel on Climate Change (Parry et al., 2007) pre-

dicted that the average global temperature will continue to increase

by 1.1–6.4 ◦C above 1990 levels during the 21st century. Such

increases will affect the conservation and management of differ-

ent species in different ways. Projections of future distributions of
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species by assuming a retaining relationship between each species

distribution and environment further indicated that species either

with or without dispersal/movement would face a quite extinction

risk under climate change (Thomas et al., 2004). However, effect of

species movement on modeling is unknown yet. Estimating how

species movement affects a predictive model, thus, could certainly

aid in addressing the current and future species–environment rela-

tionships.

Many predictive models of species distributions have been

developed and applied to various landscape scales (Guisan and

Zimmermann, 2000; Cushman and McGarigal, 2002; Store and

Jokimäki, 2003; Johnson et al., 2004; Guisan and Thuiller, 2005;

Elith et al., 2006; Hernandez et al., 2006; De Mas et al., 2009).

Additionally, the majority of modeling exercises, species data are

transferred to a grid system (Vallecillo et al., 2009; Ko et al.,

2009). Modeling methods traditionally have used linear algo-

rithms and emphasized both species presence and absence data

(Austin and Meyers, 1996; Jose and Fernando, 1997). Nonlinear

0304-3800/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
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algorithms and species presence-only models have been recently

developed and used widely (Lek et al., 1996; Jose and Fernando,

1997; Aitkenhead et al., 2004; Stockman et al., 2006; Phillips et al.,

2006). Results from these latter models have been found to bet-

ter explain the relationship between species and environmental

factors (Manel et al., 1999a,b; Ko et al., 2009). Species absence

data are frequently unavailable or inadequate to interpret species

distributional ranges/patterns because of uncertainties of those

actual or undetectable absences, such as a period of species hiber-

nation as well as inactivity (Gu and Swihart, 2004; Vaclavik and

Meentemeyer, 2009). Incorrect absence data even leads to mis-

leading model predictions of species potential distributions (Ko

et al., 2009). We thus used the presence-only models in this study

which often exhibit good accuracy on predicting species distribu-

tions (Elith et al., 2006; Tsoar et al., 2007; McPherson and Jetz,

2007).

Surrounding habitats, as a primary consideration for conser-

vation as species occupancy areas (Saab, 1999), are usually been

highly used by bird species as breeding and foraging habitats owing

to their high vagility (Ambuel and Temple, 1983; Lees and Peres,

2009). The vagility of different forest birds and waterbirds varies

from less than 1 km to more than 200 km (Shirley, 2006; Keller

et al., 2009). Spatial-use patterns of species within both the species

occupancy and surrounding areas differ greatly at multiple tempo-

ral and spatial scales due to varying interactions between landscape

structure and species responses to that structure. The structure and

pattern of the landscape, natal dispersal, mate selection behaviors,

seasonal migration, temperature change, movement potential mor-

tality, and food availability within those areas potentially influence

the species’ spatial-use patterns, especially movement distances of

a species (Desrochers and Hannon, 1997; Norris and Stutchbury,

2001; Cooper et al., 2002). Main factors influencing a species’ spa-

tial patterns, however, are often not well understood, but Shirley

(2006) found that in general focusing on species moving from one

place to another, to engage in particular activities in particular

places, provides a rough understanding of how species response

to adjacent habitat or forest remnants. The areas where species

have been recorded and the areas within the movement distance

of the species are the areas most occupied by species. Cooper et al.

(2002) used two movement rules to simulate population dynam-

ics in the Brown Treecreeper in Australia, which explained that

species’ nearest neighbors are important for population and direc-

tion of movement affects a species distribution. Therefore, quality

of surrounding habitats needs to be addressed, and the species

movement patterns, such as movement distance and direction, are

valuable inputs when linking species spatial-use patterns and the

surrounding habitats together.

Bird surveys in Taiwan have been carried out since 1993 provide

an opportunity to estimate the possibility of species movement

patterns as an input variable to predictive models of species dis-

tributions. The Taiwan Island, an area of about 36,000 km2, lies

in the western Pacific Ocean, less than 161 km from the south-

east coast of mainland China, from which it is separated by the

Taiwan Strait. Though several survey sites have only been sur-

veyed once over the 17 years, data for at least one year have been

recorded over the entire island of Taiwan. Volunteer bird observers

trained by Taiwanese organizations have recorded species, heard

and seen, along designated transect lines. These data provide infor-

mation throughout the island on species distributions. Endemic

bird species in Taiwan were chosen only as sampling data in

this study according to their subjects of concern, especially rare

endemic species. Their low population and naturally secretive

behaviors, however, increase the difficulty of observation (Ko et al.,

2010) as well as predicting their distributions. Fortunately, com-

mon species can play as reference when drawing insights into

rare species’ conservation when they are sympatric related species

(Githiru et al., 2007). Finding a method to be used on common

species and then applied to rare species will be feasible to under-

stand rare species distributions more. Simultaneously, combining

the movement ability of rare endemic species with predictive

model will have even greater control and understand their possible

distribution.

Using these data from the bird surveys, we addressed two ques-

tions in this study: (1) can predictive models using additional

species presence based on species vagility (i.e. species move-

ment distances) with actual species occurrence records tell us

more than using actual species occurrence records alone? and

(2) can we enhance the value of predictive models by adding

consideration of species’ spatial-use patterns (i.e. movement pat-

terns)? In general, this study combined predictive models and

species minimum movement distances to determine if the pre-

dicted distributions were more accurate than those not using

species movement information. To do this, we compared tradi-

tional methods, which had emphasized species recorded presence

only, referred to as the “Standard Method” in our study, with

the novel method such as the “Buffer Method”, which broad-

ened species recorded presence to neighboring regions, to see how

predictive models could become more effective. Three presence-

only models, GARP, MAXENT and LIVES, were finally used to

predict species potential distributions on the Taiwan whole

island.

2. Materials and methods

2.1. Species occurrence data collection

We used two bird inventory projects in Taiwan from 1999 to

2003 (Koh et al., 2006) and 1993 to 2004 (Hsu et al., 2004) in this

study. The data included a total of 4082 census locations, which

covers around 10% of Taiwan when placed on a 1 km2 grid system.

Each location was censused at least once a year during the breed-

ing season or seasonally during the survey period. Bird-occurrence

data were recorded by geographical coordinates and transformed

to a square kilometer grid. There are 17 endemic bird species cur-

rently in Taiwan and ten of these are common. We used these ten

common species and two rare species of the 17 to compare differ-

ent modeling methods. In addition, the two rare species were used

to determine the possible conservation effectiveness of each model

(Table 1).

2.2. Modeling methods

Five types of environmental factors were used in the models:

topography, climate, vegetation, human disturbance, and ecologi-

cal regions. The first four types were estimated using ArcGIS and

ERDAS and described in detail by Lee et al. (2004) and Ko et al.

(2009). We interpolated annual mean temperature and annual

total precipitation through 355 stations data including weather sta-

tions and auto rain gauges offered from Central Weather Bureau

of Taiwan. The last type, ecological regions, included two fac-

tors: ecoregions and eastern index. The whole of Taiwan was

divided into 41 ecoregions according to township districts, geo-

graphical zones and biological boundaries (Su, 1992). The eastern

index weighted the three eastern counties more than the other

13 counties. The three counties, Yilan, Hualien, and Taitung, are

located on the eastern side of the Central Mountain Range and

were assigned an eastern index value of 1 and distinguished from

the other counties that were assigned a value of 0. All of envi-

ronmental variables were estimated by univariate analysis with

actual species occurrence records first. We then left the vari-

ables which had high relationships (p < 0.01) with the species
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Table 1
12 Taiwanese endemic bird species included in the study. Ten species are common which were used to compare the Standard and Buffer methods and two species are rare

which were used as further applications.

Category Family English common name Scientific name

Common species Megalaimidae Taiwan Barbet Megalaima nuchalis

Phasianidae Taiwan Partridge Arborophila crudigularis

Pycnonotidae Styan’s Bulbul Pycnonotus taivanus

Timaliidae Steere’s Babbler Liocichla steerii

Taiwan Hwamei Garrulax taewanus

Taiwan Yuhina Yuhina brunneiceps

White-whiskered Laughingthrush Garrulax morrisonianus

White-eared Sibia Heterophasia auricularis

Turdidae Collared Bush-Robin Luscinia johnstoniae

Formosan Whistling-Thrush Myiophonus insularis

Rare species Phasianidae Mikado Pheasant Syrmaticus mikado

Swinhoe’s Pheasant Lophura swinhoii

occurrence records, compared spatial autocorrelation among these

important variables, and finally remained the most important

variables as inputs to predictive models. Elevation, temperature,

and precipitation were not excluded after the spatial autocorre-

lation analysis according to their unique ecological meanings for

organisms. The relationships between each species and the envi-

ronmental variables were implemented by the above procedure

independently.

The movement patterns of the Taiwanese endemic bird species

are not clearly known yet. We defined the minimum movement

distance (i.e. 1 km) mentioned by Shirley in 2006 as the sizes of

the grid, and assigned species occurrence to the center of the grid

square overlaying the species location. We also referred to Cooper

et al. (2002) and Howard (1983) to assume that species would move

mostly to the nearest neighboring areas with random/all direc-

tions in a search range. Only grids with actual species presence

were used in the Standard Method, where those grids along with

those grid squares adjacent to an actual presence grid that squares

were regarded as species-present grid squares in the Buffer Method

(Fig. 1).

We utilized three presence-only models, GARP, MAXENT, and

LIVES, to predict species potential distributions. These three models

are widely used in conservation studies and have been shown to

perform well in comparison to other algorithms (Elith et al., 2006;

Hernandez et al., 2006; Jin and Hilbert, 2008). A total of 67% of all

occurrence records for each species were used to determine the

models (i.e. as a training set) and 33% were used to evaluate (i.e.

as a testing set). The detail of each model used in our study is as

follows:

GARP (Genetic Algorithm for Rule-set Production,

http://www.nhm.ku.edu/desktopgarp/) models the ecological

niches of species and describes the environmental conditions

under which species are able to maintain populations (Stockwell

and Peters, 1999). GARP creates a unique genetic algorithm using a

series of rules relating to species ecological characteristics in order

to predict species occurrences. The optimized parameters were

set for 100 runs, a 0.01 convergence limit and 1000 maximum

iterations. Four types of rules, including atomic, range, negated

range, and logistic regression, were used simultaneously. The final

probability of a species-possible distribution by GARP prediction

was averaged over the output of 100 runs.

MAXENT (Maximum Entropy Method) is a generative approach

for making predictions through statistical concepts (Phillips et al.,

2006). It analyzes individually the weights of environmental factors

and calculates a continuous probability value for species distribu-

tion. For all of our species, we used the default setting in MAXENT,

except for the maximum number of iterations (Phillips and Dudik,

2008). A maximum of 1000 iterations was used rather than the 100

used in GARP.

LIVES (Limiting Variable and Environmental Suitability) uses

limiting-factor theory and predicts that a species distribution is

limited within a certain range on environmental gradients (Odum,

1997). The theory of LIVES is different from GARP and MAXENT,

because it focuses on habitat not suitable for a species instead of

suitable habitat used in GARP and MAXENT. It finds the poten-

tial limiting factors for “non-habitats” where they are beyond

the range in which a species is known to occur. We followed

the methods of Li and Hilbert (2008) and calculated the suit-

ability of each grid square as a possible location of a species

distribution.

2.3. Model evaluation

We selected the area under the curve (AUC), Kappa, sen-

sitivity, specificity, and accuracy as measurements to evaluate

predictive ability of the three presence-only models under the

Standard and Buffer methods. The AUC can be used to assess

the models’ overall performance because measures of the area

under the receiver operating characteristic (ROC) plot show which

have values between 0.5 (random) and 1.0 (perfect discrimination)

(Manel et al., 2001; Fawcett, 2004). Kappa, sensitivity, speci-

ficity, and accuracy values derive from a confusion matrix that

cross-tabulates the actual and predictive patterns (Fielding and

Bell, 1997). Kappa measures the extent to which the agreement

between actual and predicted areas is higher than that expected

by chance alone. Sensitivity calculates the percentage of presences

that are correctly predicted as presences while specificity calcu-

lates the percentage of absences that are correctly predicted as

absences. Accuracy estimates the overall percentage of presences

and absences that are correctly predicted. A model has a higher

predictive performance with a Kappa value greater than 0.4 and a

sensitivity/specificity/accuracy value close to 1. We first used the

AUC to ensure a model’s availability and then calculated the other

four values. In addition, we set threshold values, so that a species

would be considered present with a certain predictive probabil-

ity, by comparing a species’ original prevalence and its AUC. If the

AUC value of a species was greater than the species’ prevalence,

we used the AUC value as the species; threshold, otherwise we

used the prevalence. This threshold-determination method is rig-

orous and is expected to make more accurate predictions than other

approaches (Ko et al., 2009). The predictive power of all the models

in predicting presence and absence was differentiated after setting

thresholds.

The differences in Kappa, sensitivity, specificity, and accu-

racy values between the Standard and Buffer methods for

each presence-only model were analyzed using paired samples

Student’s t-test. All these assessments and statistics were imple-

mented in SPSS 17 (Anon, 2001).
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Fig. 1. Diagrams of the two interpolation/extrapolation methods used to calculate each grid system. Solid black dots represent location where species were recorded. The

Standard Method only notes the areas where species were recorded as species occurrence data. The Buffer Method extends the areas where species were recorded into the

neighboring 1 km regions (indicated by squares with differently dashed boundaries).

3. Results

3.1. Estimation through common species

Original data from the areas occupied by all ten common species

and used in the Standard Method averaged 1.6% (0.54–4.36%) of

total number of 37,552 1 km2 grid squares of Taiwan. When we

allowed for bird species movement distances within 1 km in any

direction, data for the Buffer Method raised the average occurrence

to 8% (2.50–20.52%) of the total grid squares. That is, the results of

the data in the Buffer Method for all common species used to build

the predictive models increased by 6.4% (Table 2).

The general patterns of predicted distributions for the whole

of Taiwan for each method (i.e. the Standard and Buffer methods)

were similar for each species (Fig. 2 top two maps); however, the

Buffer Method had higher sensitivity and accuracy values (Fig. 3)

and detected finer changes than the Standard Method (Fig. 2 bottom

six maps). There were more areas of species potential distribution

in the Buffer Method (Fig. 2). Comparing predictive probabilities

showed that the Buffer Method had higher average probability val-

ues (Table 3) and lower maximum probabilities than the Standard

Method for all common species.

Table 2
Environmental factors used in the three presence-only models: GARP, MAXENT, and

LIVES.

Type Description

Topography Mean Elevation, Distance to Sea, Mean Slope, Length of

Ridge

Climate Annual Mean Temperature, Annual Total Precipitation,

Total Water Deficiency, Warmth Index, Number of

Month in Humid Period, Precipitation in Humid Period,

Precipitation in Prehumid Period

Vegetation NDVI, Forest Density, Vegetation, Natureness Index

Human disturbance Road Density, Urbanization Index, Distance to Road,

Distance to City

Ecological region 41 Ecoregions, Eastern Index

The distribution of AUC values for the three presence-only mod-

els (GARP, MAXENT, and LIVES) for each species were over 0.8,

except for Taiwan Barbet (mean AUC = 0.62) and Taiwan Hwamei

(mean AUC = 0.53) (Table 3). Consequently, we did not use these

species to assess Kappa, sensitivity, specificity, and accuracy, using

only the remaining eight species having AUC values over 0.8, which

confirm reliability of the models. The individual values of these

eight species in the two methods performed well on Kappa val-

Table 3
Values of average predictive distribution probability (first values), Kappa (second value), and sensitivity (third value) for all species for the three presence-only models in

the Standard and Buffer methods. AUC values were calculated to confirm reliability of the models of ten common species before comparing Kappa, sensitivity, specificity,

and accuracy values. Except for Taiwan Barbet and Taiwan Hwamei, with AUC values lower than 0.8, other species were used to further comparisons on Kappa, sensitivity,

specificity, and accuracy.

Category Species Presence-only models

GARP MAXENT LIVES

Standard Buffer Standard Buffer Standard Buffer

Common species Taiwan Barbet 0.54, 0.20, 0.67 0.45, 0.21, 0.64 0.36, 0.20, 0.79 0.40, 0.20, 0.83 0.90, 0.15, 0.71 0.94, 0.11, 0.87

Taiwan Partridge 0.41, 0.56, 0.78 0.46, 0.56, 0.75 0.23, 0.58, 0.88 0.31, 0.61, 0.93 0.86, 0.48, 0.96 0.89, 0.50, 0.99

Styan’s Bulbul 0.23, 0.78, 0.84 0.24, 0.78, 0.84 0.06, 0.74, 0.89 0.11, 0.74, 0.87 0.56, 0.61, 0.71 0.60, 0.74, 0.87

Steere’s Babbler 0.32, 0.65, 0.76 0.36, 0.74, 0.90 0.17, 0.74, 0.91 0.26, 0.70, 0.96 0.84, 0.95, 0.99 0.88, 0.91, 0.99

Taiwan Hwamei 0.40, 0.07, 0.39 0.46, 0.08, 0.46 0.22, 0.10, 0.38 0.31, 0.10, 0.45 0.86, 0.08, 0.56 0.89, 0.12, 0.90

Taiwan Yuhina 0.35, 0.69, 0.76 0.40, 0.70, 0.78 0.21, 0.81, 0.94 0.27, 0.75, 0.93 0.81, 0.60, 0.68 0.85, 0.56, 0.83

White-whiskered Laughingthrush 0.21, 0.76, 0.76 0.26, 0.93, 0.94 0.06, 0.94, 0.94 0.11, 0.98, 0.99 0.74, 0.64, 0.64 0.79, 0.87, 0.88

White-eared Sibia 0.32, 0.61, 0.70 0.38, 0.73, 0.86 0.22, 0.80, 0.96 0.30, 0.77, 0.97 0.77, 0.41, 0.72 0.78, 0.42, 0.81

Collared Bush-Robin 0.20, 0.61, 0.69 0.21, 0.61, 0.73 0.09, 0.76, 0.91 0.13, 0.82, 0.92 0.75, 0.71, 0.92 0.81, 0.70, 0.97

Formosan Whistling-Thrush 0.48, 0.56, 0.70 0.51, 0.52, 0.70 0.26, 0.62, 0.77 0.33, 0.67, 0.88 0.86, 0.44, 0.87 0.89, 0.47, 0.99

Rare species Mikado Pheasant 0.18, 0.61, 0.71 0.24, 0.74, 0.87 0.14, 0.68, 0.68 0.14, 0.77, 0.77 0.77, 0.40, 0.29 0.82, 0.50, 0.52

Swinhoe’s Pheasant 0.33, 0.43, 0.60 0.39, 0.55, 0.75 0.85, 0.58, 0.87 0.89, 0.66, 0.92 0.18, 0.86, 0.97 0.21, 0.92, 0.99
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Fig. 2. Distribution of White-eared Sibia (Heterophasia auricularis) predicted throughout Taiwan using the Standard and Buffer methods. Top two maps show species

distribution predicted by GARP in the whole of Taiwan (left: Standard Method; right: Buffer Method). Bottom six maps represent minor changes between the Standard and

Buffer methods in the three presence-only models. Black points and black open squares are species occurrence grid squares records while gray areas are species potential

distributions.

ues (>0.4) (Table 3). The highest Kappa value was 0.98 using the

Buffer Method with MAXENT for the White-whiskered Laughingth-

rush (Garrulax morrisonianus) (Table 3). For sensitivity and accuracy

values, the Buffer Method was better than the Standard Method

(Table 3; Figs. 3 and 4) with the differences in these two mea-

surements for each species significantly between the Standard and

Buffer methods for each model (for overall, p < 0.01 in sensitivity

and p < 0.05 in accuracy; for individual models, p < 0.05 in GARP

and MAXENT, and p < 0.01 in LIVES) (Figs. 3 and 4). There were no

significant differences in Kappa and specificity values between the

two methods (all with p > 0.05) (Fig. 3).

3.2. Application to rare species

Data for two rare species could be analyzed using the Buffer

Method. Original data for Swinhoe’s Pheasant (Lophura swinhoii)

covered 0.31% of the area of Taiwan and rose to 1.93% using

the Buffer Method, while Mikado Pheasant (Syrmaticus mikado)
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Fig. 3. Averages of four measurements for model evaluation in the Standard and

Buffer methods. Eight common species with AUC values over than 0.8 were used

to compare the four measurements. Sensitivity and accuracy values showed sig-

nificantly differences between the two methods (p < 0.01 in sensitivity; p < 0.05 in

accuracy) while Kappa and specificity values had no differences.

increased from 0.08 to 0.58%. Predictive distributions showed that

there are some suitable habitats in Taiwan for these two rare

species. AUC values of over 0.8 were obtained in the Standard and

Buffer methods for three models found to predict these two species

distributions well. The four measurements had similar patterns to

the common species (Table 3). The two rare species showed no

significant differences between the Standard and Buffer methods

for Kappa and specificity while having significant differences for

sensitivity and accuracy.

4. Discussion

Combining presence-only predictive models with species move-

ment characteristics (e.g. movement distance and direction) to

Fig. 4. Sensitivity and accuracy values of the eight common species, having AUC

values over than 0.8, for each presence-only model in the Standard and Buffer

methods.

predict species potential distribution provides useful insight in con-

servation planning. Predictive models not only use biogeographical

data but also incorporate the biological aspects of the species under

the study. Knowing the potential distributions of species will help

to develop better conservation plans for them.

In this study, using the Buffer Method was better than the

Standard Method at predicting species actual distributions much

more accurately and at knowing species surrounding distribu-

tions. Especially, the sensitivity values, defined as the percentages

of actual occurrence accurately predicted, were higher using the

Buffer Method than the Standard Method (Table 3). Although the

assumptions in this study were to increase the prevalence of twelve

Taiwanese endemic bird species and to treat it as preference for

species distribution, we used actual species occurrence records, not

including those occurrences expanded the Buffer Method, to esti-

mate the value of sensitivity. The assumptions here would not lead

to biased sensitivity. When considering species absence data, the

predictive performance of the Buffer Method was as good as that of

the Standard Method. The original data for species absence, which

was used to build the predictive models, however, is affected by

collection of the data, such as the limitations of survey designs, and

census-taken availability, which may fail to reveal species when

they are actually present. This is particularly true for rare species

and near the range boundaries of all species. Accordingly, the data

may certain inadequacies in the records of species absence. There-

fore, using sensitivity vales, which emphasizes species present data,

as a prime value for assessment of predictive models is reliable

in ecological and conservation studies and the Buffer Method did

show a good sensitivity in our case.

However, at the sensitivity value point, the Buffer Method

simultaneously faced a challenge: bigger predicted areas would

always get a higher sensitivity value. We agreed this challenge and

that is why we primarily used five evaluations to compare the two

methods. AUC provided a basic threshold and proved the usabil-

ity of these two methods first. Kappa, sensitivity, specificity, and

accuracy values gave us more information on the two methods,

either predicting species presence or absence. Both of the Buffer

and Standard methods in the results showed a considerable abil-

ity on prediction. Although Kappa and specificity values did not

have significant differences between the two methods, the Buffer

Method had more high Kappa values than the Standard Method

in three models (Table 3), especially when using the Buffer Method

on rare species. We believed that the Buffer Method provided more

species potential surrounding distribution areas, especially on rare

species, which would lead further conservation management and

landuse planning.

Our results showed that the maximum values of predictive prob-

abilities for the Buffer Method for all species were lower than those

of the Standard Method for all three models. That is because the

Standard Method had more precise species occurrence data, which

helped the models to achieve maximum predictive values.

The average probability values predicted by the Buffer Method

were higher than those predicted by the Standard Method (Table 3).

The resolution of species-specific buffer distance needs to be noted

but is often difficult to assess in practice. Several studies using

a radio tracking method have showed that certain species’ daily

dispersal distances were generally less than 500 m and the home

range size averaged with less than 50 ha (Rothstein et al., 1984;

Groombridge et al., 2006; Trejo et al., 2008). It is possible that we

might have used excessive buffer distances in our study. However,

a species spatial use of habitat is influenced by landscape structure,

birds moving farther in fragmented landscapes, and sometimes

occupying discontinuous territories comprising multiple fragments

(Leonard et al., 2008). The topography in Taiwan is heterogeneous

(Lee et al., 2004) and often has large variations within a grid square

that may facilitate longer dispersal distances and larger territories.
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Furthermore, Shirley (2006) suggested that wide habitats may pro-

vide valuable connections within forest at clear-cut and river edges,

in addition to providing breeding habitat. The species occurrence

records used in this study included whole year records and we

assumed that it captured general patterns of species distribution

during different seasons. In addition, using a one-by-one grid sys-

tem provided a finer resolution to predict a wide range of species

distributions. Based on the above, 1 km buffer distance was the best

choice to combine our modeling methods and species dispersal

distances.

Different models can provide best fit for different species. Sev-

eral studies have used the three presence-only models chosen in

this study (Elith et al., 2006; Tsoar et al., 2007; Phillips and Dudik,

2008; Ko et al., 2009). Moreover, these models seem to provide

the best predictions so far, compared with traditional linear mod-

els, such as linear regression and multiple discriminant analysis,

and some non-linear models, such as artificial neural networks (Ko

et al., 2009). We found however that LIVES was not as good as the

others in our case.

The theory of LIVES originated from the concept of limiting

factors and tries to find unsuitable habitat of a species dis-

tribution – a totally different concept to GARP and MAXENT.

Environmental factors in Taiwan vary with elevation, and adja-

cent grid squares sometimes have enormous differences. Due to

such differences, LIVES could not easily catch the characteristics of

species-unsuitable areas in our study. Moreover, if a specific envi-

ronmental factor does significantly effect a species’ distribution,

prediction by LIVES would put weight on some areas where that

specific environmental factor exits, and predict all those areas as

species occurrence areas. LIVES may neglect other environmental

factors contributing to a species’ distribution. Using either the Stan-

dard Method or the Buffer Method, LIVES predicted much more

potential distribution than GARP and MAXENT (Fig. 2). Although

LIVES predicted almost all the species occurrence areas (only one

area was not predicted by the Standard Method of LIVES), it also

predicted many areas as being a potential species presence dis-

tribution instead of being a potential species absence distribution

as predicted by GARP and MAXENT (Fig. 2). Because of this, the

Kappa values of predictions of LIVES were lower than GARP and

MAXENT (Table 3). Furthermore, finding species-unsuitable habi-

tats sometimes needs more data to be certain that a species does

not exist there. Rare species have higher conservation priority but

due to their rarity, they can have fewer occurrence records, which

can easily lead to limited information and poor prediction while

using LIVES.

Choosing appropriate environmental factors to use in predictive

modeling methods is important but difficult. Most species were

well predicted by each model with the exception of Taiwan Barbet

and Taiwan Hwamei. Both of these birds are recent endemic species

in Taiwan as shown by the examination of their microsatellite DNA

between subspecies (Li et al., 2006; Feinstein et al., 2008). Observers

may confuse these two new endemics and other subspecies with

more established species and log incorrect records, which would

further compromise the results. Moreover, both of these species

live more in lower elevation sites where human disturbance and

noise may make them wary and harder to spot. Otherwise, the

remaining eight common and the two rare species were all well

recorded in the study.

Environmental data at a fine spatial resolution usually capture

environmental variability better than at a lower resolution, espe-

cially in mountainous areas. Global climate data are recorded at

a resolution of 30′′ (�1 km2) by interpolated climate surfaces for

global land areas and are used widely around the world (Hijmans

et al., 2005). In this study, however, we used annual mean temper-

ature data, with a very high resolution, interpolated by ourselves

rather than global climate data. From the records of weather sta-

tions in Taiwan, we found that annual mean temperature has

increased with time, particularly after 1990. The temperature data

used in this study were collected from 1990 to 2000, and spanned

the period of the bird census (1993–2004) more precisely than the

global climate data (mostly from 1950 to 2000). The elevation bias

used to adjust uncertainty in climate surfaces in our and the global

climate data was the same. Therefore, even though we did not use

the global climate data in this study, our results are still credible.

In this study, the occurrence records of common and rare species

showed their overlapped habitats in elevation. We followed Githiru

et al.’s observation (2007) that common species can play as refer-

ence when drawing insights into rare species’ conservation when

they are sympatric related species. Thus, we supposed common

species could be a precursor for testing our methods. According

the results, the Standard and Buffer methods could be used well on

common species which avoided bias from small quantity of data

and ensured the availability of the Buffer Method. Then using on

rare species, the Buffer Method indeed provided us different and

important thoughts to structure rare species needed-habitats.

For conservation purposes, we have demonstrated that the

Buffer Method can clarify species potential “surrounding” distri-

butions. The movement distances of bird species can be extensive

due to feeding and reproductive needs. These movements can cover

more distances than the areas where bird species are seen and

heard. So the use of point data alone may not suffice because point

data cannot reflect the whole distribution of a bird as it moves

about. We suggest use of the Buffer Method to adjust these origi-

nal point data. Forest birds are wary of crossing habitat boundaries,

and conservation of a wide array of suitable habitats may provide

valuable connections, for example between unlogged patches and

breeding habitat. The Buffer Method examined in this study is able

to take account of such matters. The Buffer Method can be made

more flexible by changing the length of the buffer to suit species

with different habits or movement patterns and has great potential

for developing further conservation management strategies.
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